Data-ariven systems

Query optimization

BME Automatizélasi és
Alkalmazott
Informatikai Tanszék

Contents

* Purpose of query optimization
* Microsoft SQL Server

> Execution plans
> Join and table access options
> General recommendation

* MongoDB

> Indices and execution plans

BMWH_I 2 Data-driven systems

What is the purpose of query
optimization?

What is the purpose of query optimization?

BMM 4 Data-driven systems

What is the purpose of query optimization?

BMM 5 Data-driven systems

Response time is affected by
* |/O cost

> Most prominent in data bases
> Does not improve according to Moore’s law

> Needs special tricks

* CPU usage
> Complex queries
> Complex computations

* Memory usage
> Cache effect

BMWH_I 6 Data-driven systems

Microsoft SQL Server

General concepts

Basics of the optimization

 Evaluates based on statistics
> Cost = response time (CPU + 1/O time)

* Trivial plan
> Unambiguous for simple queries

> Rule-based

* When no trivial plan is available

> Complex queries
> Three phase optimization

BMWH_I 8 Data-driven systems

Three phase optimization

* No trivial plan
* 0. Phase

> Simple optimizations
> Preferred hash join
> If cost < X = execute

* 1. Phase

> Complex optimizations
> If cost <Y = execute

e 2. Phase

> Parallel execution

BMWH_I 9 Data-driven systems

Process of executing a query

* Analyzer
> Compiler
> Logical plan

e Optimization
> Physical execution plan

> Read tables
> Joining tables

* Row executor
> Mapping physical plan to |/O operations

* Executor
> Executes the operations

BMWE_I 10 Data-driven systems

Microsoft SQL Server

Logical execution plan

Elements of the logical execution plan

* Parser tree
> Relations (leaf)
> Operations (node) a+b*c
> Data flow from bottom to top

* Relational algebra operations 1

> Cartesian-join (RxS) —
Projection (r,(R))
Selection (o((R))
Join (RxS)
Filtering duplicates (6(R))
Grouping (y,(R))
Sorting (1 (R))

BMWE_I 12 Data-driven systems

Parser tree

select establishedYear
from owner o, company ¢

where o.id = c.ceoid AND name like '%John'

TlestablishedYear

Oid=ceoid AND name like%John’

X

owner company

BMWE_I 13 Data-driven systems

Refactoring the parser tree - 1

* Create an optimal logical execution plan
* Reduce possible physical execution options

* Basic concept
> Move selection (where) down in the three

> Using joins
- Cartesian join only when explicitly specified
> One side of a join should be a table

BMWH_I 14 Data-driven systems

Refactoring the parser tree - 2

e Selection
> Can be re-ordered: o¢,(0g,(R)) = 6r,(01(R))
> Can be re-written:

= Orand 6(R) = og(05(R))
= O or 6(R) = 0 (R) UNION o(R)

* Join
> RIS = 6¢(R%S)
> RIS = SR

> (RMS)XU = RX(SXU)

BMWE_I 15 Data-driven systems

Refactoring the parser tree - 3

* Joining and selection
> 0r(RXS) = 6-(R)XS

- If R has all attributes of F

> 0r(RXS) = RxG(S)
- If S has all attributes of F

- If both R and S has attributes of F

* Duplicates

>3(yL(R)) =7(R)
> 0(RXS) =0(R) %X 6(S) (similarly for joins)

BMWH_I 16 Data-driven systems

Microsoft SQL Server

Physical execution plan

Physical plan

* Elements of the physical plan

> Operators for reading the table
- Logical plan leaf reading operations

> Executing relational algebra operations

* Creating plans
> Rule-based

> Cost-based

- Table seek methods
- Implementation of joins
- Order of joins

BMWH_I 18 Data-driven systems

Nested loop join

* Two embedded for cycles

*|/O cost
> O(num_block_1* num_block_2)

* Works in all cases

> In case of large tables: keep only partitions of the
tables in memory

BMWH_I 19 Data-driven systems

Hash join

* First pass
> Read the smaller table

> Build a hash table in memory
- Key is the column used for joining

* Second pass
> Read the larger table
> Search for matching records in the hash table

*|/O cost
> O(num_block_T+ num_block_2)

BMWH_I 20 Data-driven systems

Sort Merge Join

* Reads both tables into memory

* Sorts based on the joined columns

* Merge the two sorted lists

> While "walking" the two sorted lists

-or small tables

ndex due to sorting

* |/O cost

> O(num_block_1+ num_block 2)

e T 2

Data-driven systems

Table scan methods - 1

* Generally there are two ways

> Full scan

- For small tables

- When most rows are needed
> Index scan

- When using filtering

* If there is an index covering the filter criteria
- Sorting

BMWE_I 22 Data-driven systems

Table scan methods - 2

* Table scan
> No index
> Evaluates the filtering condition

* Clustered index scan
> Clustered reading
> Data blocks ordered by index
> Clustered index created along primary key
> Preferred over table scan

BMWH_I 23 Data-driven systems

Table scan methods - 3

* Nonclustered index scan
> Similar to clustered index scan
> Mostly for evaluating =

* Clustered/Nonclustered index seek
> Similar to index scan

> Walks the index from a starting point
->, between, < operators

BMWH_I 24 Data-driven systems

MS SQL Server indexes

* B tree
> Simple
> Compound indexes
- Hierarchical

> Clustered
- Data blocks orderes by index
- One for each table
- Automatically created for the primary key

BMWE_I 25 Data-driven systems

MS SQL Server indexes

* Clustered / non-clustered

I_Hl || | |
_—

H EEEEEEEEEEEEEEREEN |||||||EIE|||||||||||
Black 1 Block 2 Block 3 Elock 1 [ock 2 Block 3

Select order_nbr, item_name from ordor natural join item; Select order_nbr, item_name from ordor natural join item;
Clustered table rows Un-Clustered table rows
Clustering_fador ~= blocks Clustering_factor ~= num_rows

Source: http://www.dba-oracle.com/t_table_row_resequencing.htm

BMWE_I 26 Data-driven systems

http://www.dba-oracle.com/t_table_row_resequencing.htm

Indexes - 1

 Cover index (included column)
> Adding further data into the B tree leaf nodes
> The row data does not need to be accessed

* Using clustered and non clustered indices
together

> Nonclustered index leaf
- Does not contain a physical address
- Points to the clustered index

> Double index read

BMWH_I 27 Data-driven systems

Indexes - 2

* Indexed views
> The view result is stored
> Index can be defined, works as for tables

BMWE_I 28 Data-driven systems

Execution plan

* |t defines exactly what action is performed on
each node

N1 (meree i0in)
e T 29

Adatvezérelt rendszerek

Végrehajtasi terv megnézése

select p.name from Product p

join Category c on p.CategoryID
where c.Name = 'LEGO'

gFE_‘I New Query 9% .ﬁ?' DMX xﬁﬂ nﬁ’]| &b Ij—‘l | |
= Cc.ID v|PE>(ecu‘ce v 8o |g‘ﬂg‘gﬁ'ﬂ|

H Include Actual Execution Plan (Ctrl+M) pe (54)* #

U —

(]

%7 Results 2 Messages & Execution plan
Query 1:

Query cost (relative to the be
select p.name from Product p join Catec

|
s o it
Nested Loops Clustered Inde..
(Inner Join) [Product] . [PK ..
SELECT Cost: 1 % | Cost: 41 %
Cost: 0 % 0.000s 0.000s
1 of 10 of
1 (100%) 10 (100%)
1 1
Oname='LEGO oty
Clustered Inde..
[Category] . [PK..
Cost: 58 %
Category Product 0.000s
1 of
10 (10%)
Parallel False
Physical Operation Clustered Index Seek
Predicate

[M22XDS].[dbo].[Category].[Name] as [c].[Name]=N'LEGO'
FORWARD

Scan Direction

Query plan in SQL Server

* Press CTRL+L after executing the query

—belect top 100 0.ID, p.name, c.name, oOi.price
from
OrderItem oi join [Order] o on 0i.OrderID = 0.ID
join Product p on oi.ProductID = p.ID
join Category c on p.CategoryID = c.ID

Query 1: Query cost (relative to the batch): 100%
select top 100 O.ID, p.name, c.name,

oi.price from OrderTtem oi join [Order] o on o0i.Ord
D I
= i i . &
Nested Loops Nested Loops Nested Loops Clustered Inde..
SELECT Top . . .
(Inner Join) (Inner Joln) (Inner Joln) [OrderItem]. [P..
Cost: 0 % Cost: 0 %
Cost: 0 % Cost: 0 % Cost: 0 % Cost: 1 %
L I L
d{? ﬂiﬂ 6{3
Clustered Inde.. Clustered Inde.. Clustered Inde..
[Category] . [PK.. [Product]. [PK .. [Order].[PK_ O..
Cost: 5 % Cost: 57 % Cost: 36 %

BMWEI 31 Adatvezérelt rendszerek

-|select top 100 0.ID, p.name, c.name, oi.price
from
OrderItem oi join [Order] o on 0i.OrderID = 0.ID
join Product p on oi.ProductID = p.ID
join Category c on p.CategoryID = c.ID
order by o.Deadline desc

Index hints

Query 1: Query cost (relative to the batch): 100%
select top 100 0.ID, p.name, c.name, ol.price from OrderItem oi join [Order] o on 0i.OrderID = o.ID joi.. .
Missing Index (Impact 17.5168): CREATE NONCLUSTERED INDEX [<Name of Missing Index, sysname,>] ON [dbo]...

=]] 2] k- iy

Nested Loops Nested Loops Hash Match Clustered Inde..

[M22XDS].[dbo].[Orderltem].Price; [M22XDS].[dbo].

[Orderltem].ProductID; [M22XDS].[dbo].[Order].ID; [M22XDS].

, [dbo].[Order].Deadline
Order By

M22XDS1.[dbol.[Order].Deadline Descending

SELECT . Top N (Inner Join) (Inner Join) cort . (Inner Join) [Order].[PK O..
cost: 0 & cost: 0% Cost: 0 % Cost: 0 % Costl e E Cost: 13 % Cost: 1 %
I
crlten Sort Clustered Inde.. Clustered Inde..
JEX [« Sort the input. [Product] . [PK .. [OrderItem]. [P..
Cost: 5 % Cost: 5 %
E Physical Operation Sort
Logical Operation Sort
SSGAE Estimated Execution Mode Row
Estimated 1/0 Cost 0,0112613
¢ Estimated Operator Cost 3,40483 (76%)
:luster Estimated CPU Cost 3,39357
-Produc Estimated Subtree Cost 4,24715
cost Estimated Number of Executions 1
Estimated Number of Rows for All Executions 100
Estimated Number of Rows Per Execution 100
Estimated Row Size 318
Node ID 4
Output List

Adatvezérelt rendszerek

Execution plan alternatives

* There can be several plan alternatives, which one is
optimal?
> Huge differences: seconds or days

> The cost depends on how many lines are the result for
each phase

> The system estimates this based on statistics
- -> Self-tuning database, redesigns if necessary, during

execution
* Plan cache
> Execution plan cache
> Used when for queries with the same structure

> Statistics have not changed
- You may need to update the cache manually!
- The statistics maintenance must be setup!

Adatvezérelt rendszerek

Self-tuning

SQL Compilation Statistics

Optimizer

3. Feedback

Adjustments

2. Analyze

Plan

Execution Estimated -
Cardinalities :
1. Monitor Actual
Cardinalities

Adatvezérelt rendszerek

Microsoft SQL Server

General recommendation

Best practices - 1

* Keep statistics up to date
> Deprecated statistics =2 suboptimal execution plan
> (This is the default unless turned off)

e Structure of the query

> SQL is declarative
- Keep procedural execution in mind

> Same result can be obtained multiple ways
> Make it simple
> Avoid select *

> Good structure is advantageous
- Use hints as a last resort

BMWEI 37 Data-driven systems

Best practices - 2

* Prefer join over
> In/ Notin
> Exists / Not exists

e Prefer In over Exists

* Views
> Avoid if possible
> Do not join them

e Avoid Or clauses = Union all

* Union all if possible

BMWE_I 28 Data-driven systems

Best practices - 3

select * selecti.”
from Invoice i from Invoice |
, where i.id not in
where not exists (
(select InvoicelD
select 1 from Invoiceltem

from Invoiceltem ii

where i.|d=ii.lnvoicelD

selecti.”

from Invoice i left outer join Invoicelterm i
on i.ld=ii.InvoicelD

where ii.id is null

Does not matter in simple cases

& T 39

Data-driven systems

Best practices - 4

* Using indexes

> Usually one can be used for one table in a query
—> Join may use it up

> Compound indexes
- Hierarchy matters

> If the key is used in an expression, the optimizer

cannot use it
- E.g., key+O (& Optimizer may handle this though)

BMWH_I 40 Data-driven systems

Best practices - 5

* Using functions

> No problem in a select
- Does not affect the execution plan

> Avoid in a where clause
- Has to be evaluated for each record
- Hard to move in the query tree

- No statistics are available for its output = hard to
optimize

BMWH_I 41 Data-driven systems

Further reading material

* Grant Fritchey: SQL Server Execution Plans,

Simple Talk Publishing, 2012

> pdf: http://www.red-
gate.com/community/books/sql-server-execution-
plans-ed-2

BMWE_\ 42 Data-driven systems

http://www.red-gate.com/community/books/sql-server-execution-plans-ed-2
http://www.red-gate.com/community/books/sql-server-execution-plans-ed-2
http://www.red-gate.com/community/books/sql-server-execution-plans-ed-2

MongoDB

Indices in MongoDB

* Index “only” for lookup
> (As there is no join operation)

* Types of indices
> Simple and compound

> Unique index
- Can be used to ensure a primary key-like attribute

> Indexes content of arrays too
> Indexes nested objects too
> TTL, Geospatial, full text

* Index must be defined
> Except: _id unique

BMWH_I 44 Data-driven systems

Types of indices

collection

Simple {

s¢ore: 30,

min 18 30 45 75 max

{ score: 1 } Index

Compound indexes collection

{

score: 30,
userid: ...,

.

"

min aal", "ca2", "ca2", '"ca2", "nb1", "xyz", max
45 75 55 30 30 90

{ userid: 1, score: -1 } Index

Images source: https://docs.mongodb.com/manual/indexes/

Data-driven systems

https://docs.mongodb.com/manual/indexes/

Basics of the optimization

* Does not use statistics

* Choice between multiple possible plans
> Starts execution all, whichever yields the first 101
results, is the best

* How can there be multiple plans?
> There are multiple indices covering the query

BMWH_I 46 Data-driven systems

Optimization steps

* Move filtering ahead of other steps

> Before projection, and if needed, split the filtering into
two

> Before sorting

* Move skip and limit ahead
> Projection

* Merge

> Limit + limit, skip + skip

BMWH_I 47 Data-driven systems

Plan cache

Query Planner

Find Matching

Cache Entry

No Match

Evaluate
Plan Performance

Pass

Generate
Result

Generate
Candidate Plans

Evict Cache

Y

Evaluate
Candidate Plans

—

)

Choose
Winning Plan

—

Y

Create

Documents

Cache Entry

—

é Results

Image source:
https://docs.mongodb.com/manual
/[core/query-plans/

Data-driven systems

https://docs.mongodb.com/manual/core/query-plans/
https://docs.mongodb.com/manual/core/query-plans/

Plan cache

 Plan cache
> Structurally similar plans
> Pass/fail evaluation

* Query shape
> Filters, sorting, etc. used

> No values
- E.g. for filtering only the filtered field name is present

BMWE_I 49 Data-driven systems

Explain

* query.explain()

"winningPlan" : {
"stage" : <STAGE1l>,
Stage-ek
"inputStage" : { ® COLLSCAN
"stage" : <STAGE2>,
e IXSCAN
"inputStage" : {
"stage" : <STAGE3>, * FETCH
[J

}
by

"rejectedPlans" : |
<candidate plan 1>,

BMWE_I 50 Data-driven systems

	Slide 1: Data-driven systems
	Slide 2: Contents
	Slide 3: What is the purpose of query optimization?
	Slide 4: What is the purpose of query optimization?
	Slide 5: What is the purpose of query optimization?
	Slide 6: Response time is affected by
	Slide 7: Microsoft SQL Server
	Slide 8: Basics of the optimization
	Slide 9: Three phase optimization
	Slide 10: Process of executing a query
	Slide 11: Microsoft SQL Server
	Slide 12: Elements of the logical execution plan
	Slide 13: Parser tree
	Slide 14: Refactoring the parser tree - 1
	Slide 15: Refactoring the parser tree - 2
	Slide 16: Refactoring the parser tree - 3
	Slide 17: Microsoft SQL Server
	Slide 18: Physical plan
	Slide 19: Nested loop join
	Slide 20: Hash join
	Slide 21: Sort Merge Join
	Slide 22: Table scan methods - 1
	Slide 23: Table scan methods - 2
	Slide 24: Table scan methods - 3
	Slide 25: MS SQL Server indexes
	Slide 26: MS SQL Server indexes
	Slide 27: Indexes - 1
	Slide 28: Indexes - 2
	Slide 29: Execution plan
	Slide 30: Végrehajtási terv megnézése
	Slide 31: Query plan in SQL Server
	Slide 32: Index hints
	Slide 33: Execution plan alternatives
	Slide 34: Self-tuning
	Slide 36: Microsoft SQL Server
	Slide 37: Best practices - 1
	Slide 38: Best practices - 2
	Slide 39: Best practices - 3
	Slide 40: Best practices - 4
	Slide 41: Best practices - 5
	Slide 42: Further reading material
	Slide 43: MongoDB
	Slide 44: Indices in MongoDB
	Slide 45: Types of indices
	Slide 46: Basics of the optimization
	Slide 47: Optimization steps
	Slide 48: Plan cache
	Slide 49: Plan cache
	Slide 50: Explain

